VIKAS SRIVASTAVA

School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 Email: vikas_srivastava@brown.edu, Tel: 401-863-2863, URL: www.SrivastavaResearchLab.com

RESEARCH INTERESTS

We focus on constitutive and computational models, informed by experiments, to describe material behavior under extreme environments and solve critical problems in solid mechanics and biomedical science.

EDUCATION

Ph.D. Mechanical Engineering, Massachusetts Institute of Technology	2005 – 2010
Minor in Finance, Sloan School of Management, M.I.T.	
M.S. Mechanical Engineering and Applied Mechanics, University of Rhode Island	1998 – 1999
B. Tech. Mechanical Engineering, Indian Institute of Technology, Kanpur	1994 – 1998
PROFESSIONAL APPOINTMENTS	
 Associate Professor of Engineering (with tenure) School of Engineering, Brown University, Providence, RI 	2024 – present
 Director of Graduate Program for Biomedical Engineering Institute of Biology, Engineering, and Medicine, Brown University, Providence, RI 	2024 – present
 Howard M. Reisman Assistant Professor of Engineering School of Engineering, <i>Brown University</i>, Providence, RI 	2021 – 2024
 Tenure Track Assistant Professor of Engineering School of Engineering, Brown University, Providence, RI 	2018 – 2021
 Mechanics Team Lead and Fitness for Service Research Area Lead ExxonMobil Upstream Research, Spring, TX 	2017 – 2018
• Senior Technical Professional Advisor – Mechanics of Materials ExxonMobil Upstream Organizations (Exploration, Development and Production), Spring, TX	2017 – 2018
Advisory Board Member, High-Pressure High-Temperature Subsea Systems DeepStar Global Offshore Technology Development Consortium, Houston, TX	2017 – 2018
Advanced Research Associate ExxonMobil Corporate Strategic Research, Clinton, NJ	2015 – 2016
Marine Team Lead ExxonMobil Upstream Research, Houston, TX	2013 – 2014
Worldwide Deepwater Drilling Engineering Coordinator ExxonMobil Upstream Research, Houston, TX	2012 – 2013
 Senior Research Engineer – Subsea and Arctic ExxonMobil Upstream Research, Houston, TX 	2010 – 2012
 Engineering Group Leader – High-speed Turbomachinery KMC, Inc., W. Greenwich, RI 	2003 – 2005
 Project and R&D Engineer – High-speed Turbomachinery KMC, Inc., W. Greenwich, RI 	2000 – 2002

HONORS AND AWARDS

Dean's Award in Bioengineering	2024
 Dean's Award for Excellence in Teaching in Engineering, Brown University 	2023
Brown Biomedical Innovations to Impact Award	2022
 Howard M. Reisman '76, P'09 Inaugural Endowed Chair 	2021
Brown Office of the Vice President of Research Seed Award	2021
Richard B. Salomon Faculty Research Award, Brown University	2020
 Advisor to Novel Idea Team, ExxonMobil Upstream Global Intellectual Property 	2017
 Senior Technical Professional Advisor (one for all upstream companies), ExxonMobil 	2017

PEER-REVIEWED JOURNAL PUBLICATIONS

*Corresponding author

Konale, A. and **Srivastava**, **V.***, A physics-informed neural network for modeling fracture without gradient damage: formulation, application, and assessment, *in review*, 2025. https://doi.org/10.48550/arXiv.2507.07272

Alkhoury, K., Chester, S.A., and **Srivastava, V.***, A machine learning method to measure the embedded crack length and position in high-density polyethylene using ultrasound time signal, *in review*, 2025. https://doi.org/10.48550/arXiv.2507.02702

Daanish, Q.A., Bellala, V., Niu, S., and **Srivastava, V.***, A machine learning method to measure the embedded crack length and position in high-density polyethylene using ultrasound time signal, *in review*, 2025. https://doi.org/10.48550/arXiv.2304.11497

Konica, S., Sheldon, B., and **Srivastava, V.***, A continuum study of the role of coupled electrochemistry and stress on the morphological evolution of Li-anode, *in review*, 2025. https://doi.org/10.48550/arXiv.2405.05837

Hajirezaei, M., Ferreira, A., Campbell, M., Ghosh, D., Alkhoury, K., Lyakhovych, Z., Mathiowitz, E., Srivastava, V., and Poling-Skutvik, R.*, *in review*, 2025

Konale, A., and **Srivastava**, **V.***, On modeling fracture of soft polymers, *Mechanics of Materials*, 2025. **Editor-in-Chief invited paper**. https://doi.org/10.1016/j.mechmat.2025.105346

Kottila, V.V., Parambil, N.K., and **Srivastava, V.***, Hygroscopic damage of fiber-matrix interface in unidirectional composites: A computational approach, *International Journal of Mechanics Sciences*, 279, 109460, 2024. https://doi.org/10.1016/j.ijmecsci.2024.109460

Ahmed, Z., LoGiudice, K., May, G. Schorr, A., Rowey, R., Yang, H., Trivedi, S., and **Srivastava, V.***, Increasing Chemotherapeutic Efficacy Using pH-Modulating and Doxorubicin-Releasing Injectable Chitosan-Poly(ethylene glycol) Hydrogels, *ACS Applied Materials & Interfaces*, 15, 45626-45639, 2023.

https://doi.org/10.1021/acsami.3c09733 Brown University News: https://www.brown.edu/news/2023-09-20/hydrogel

Konale, A., Ahmed, Z., Wanchoo, P. and **Srivastava, V.***, A large deformation model for quasi-static to high strain rate response of a rate-stiffening soft polymer, *International Journal of Plasticity*, 168, 103701, 2023. https://doi.org/10.1016/j.ijplas.2023.103701

Niu, S., Zhang, E., Bazilevs, Y., and **Srivastava, V.*,** Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance, *Journal of the Mechanics and Physics of Solids*, 172, 105117, 2023. https://doi.org/10.1016/j.jmps.2022.105177

Machnicki, C. E., DuBois, E.M., Fay, M., Hruska, A.M., Ahmed, Z., Shrestha, S., Saleeba, Z.S., **Srivastava, V.**, Chen, P.Y., and Wang, I.*, Graphene oxide nanosheets augment silk fibroin aerogels for enhanced water stability and oil adsorption, *Nanoscale Advances*, 2023. https://doi.org/10.1039/d3na00350g

LaJoie, Z., Usherwood, T., Sampath, S., and Srivastava, V.*, A COVID-19 model incorporating variants,

vaccination, waning immunity, and population behavior, *Scientific Reports*, 12(1), 20377:1-11, 2022. https://www.nature.com/articles/s41598-022-24967-z

Niu, S., and **Srivastava**, **V.***, Simulation trained CNN for accurate embedded crack length, location, and orientation prediction from ultrasound measurements, *International Journal of Solids and Structures*, 242, 111521, 2022. https://doi.org/10.1016/j.ijsolstr.2022.111521

Brown School of Engineering News: https://engineering.brown.edu/news/2022-12-08/vikas-convolutional-neural

Niu, S., and **Srivastava, V.***, Ultrasound classification of interacting flaws using finite element simulations and convolutional neural networks, *Engineering with Computers*, 38(5), 4653-4662, 2022. https://doi.org/10.1007/s00366-022-01681-y

Sampath, S.G., Telfeian, A.E., Sullivan, R., Lu, A., and **Srivastava, V.***, Shape Memory Nitinol Based Minimally Invasive Spinal Cord Stimulation Device Concept for Improved Pain Management, *Pain Physician*, 25:E375-E383, 2022. https://www.painphysicianjournal.com/linkout?issn=&vol=25&page=E375

Klinge, P. M.*, **Srivastava, V.**, McElroy, A., Leary, O., Ahmed, Z., Donahue, J.E., Brinker, T., DeVloo, P., and Gokaslan, Z.L., Diseased filum terminale as a cause of tethered cord syndrome in Ehlers Danlos syndrome: histopathology, biomechanics, clinical presentation, and outcome of filum excision, *World Neurosurgery*, 2022. https://doi.org/10.1016/j.wneu.2022.03.038

Malhotra, P.*, Niu, S., **Srivastava, V.**, and Guduru, P.R., A Technique for High-Speed Microscopic Imaging of Dynamic Failure Events and Its Application to Shear Band Initiation in Polycarbonate, *Journal of Applied Mechanics*, 89(4), 041001: 1-18, 2022. https://doi.org/10.1115/1.4053080

Zhong, J. and **Srivastava**, **V.***, A higher-order morphoelastic beam model for tubes and filaments subjected to biological growth, *International Journal of Solids and Structures*, 233, 111235: 1-11, 2021. https://doi.org/10.1016/j.ijsolstr.2021.111235

Usherwood, T., LaJoie, Z., and **Srivastava, V.***, A model and predictions for COVID-19 considering population behavior and vaccination, *Scientific Reports*, 11(1), 12051: 1-11, 2021. https://www.nature.com/articles/s41598-021-91514-7

Brown University News: https://www.brown.edu/news/2021-06-10/model

Bai, Y., Kaiser, N.J., Coulombe, K.L.K., and **Srivastava, V.***, A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering, *Journal of the Mechanical Behavior of Biomedical Materials*, 121, 104627: 1-12, 2021. https://doi.org/10.1016/j.jmbbm.2021.104627

Shukla, S., Favata, J., **Srivastava, V.**, Shahbazmohamadi, S., Tripathi, A., and Shukla, A.*, Effect of polymer and ion concentration on mechanical and drug release behavior of gellan hydrogels using factorial design, *Journal of Polymer Science*, 58(10), 1365-1379, 2020. https://doi.org/10.1002/pol.20190205

Kothari, M., Niu, S., and **Srivastava, V.***, A thermo-mechanically coupled finite strain model for phase-transitioning austenitic steels in ambient to cryogenic temperature range, *Journal of the Mechanics and Physics of Solids*, 133, 103729: 1-15, 2019. https://doi.org/10.1016/j.jmps.2019.103729

Gordon, P.*, Liu, F., Meier, H., Panchadhara, R., and **Srivastava, V.**, A material point method for simulation of viscoelastic flows, *Computational Particle Mechanics*, 6(3), 311–325, 2019. https://doi.org/10.1007/s40571-018-0215-6

Jena, R.K., Chester S.A., **Srivastava, V.**, Yue, C.Y.*, Anand, L., and Lam, Y.C., Large-strain thermo-mechanical behavior of cyclic olefin copolymers: application to hot embossing and thermal bonding for the fabrication of microfluidic devices, *Sensors and Actuators B: Chemical*, 155(1), 93–105, 2011. https://doi.org/10.1016/j.snb.2010.11.031

Srivastava, V., Chester, S.A., and Anand, L.*, Thermally-actuated shape-memory polymers: experiments, theory, and numerical simulations, *Journal of the Mechanics and Physics of Solids*, 58(8), 1100–1124, 2010.

Srivastava, V., Chester, S.A., Ames, N.M., and Anand, L.*, A thermo-mechanically coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, *International Journal of Plasticity*, 26(8), 1138–1182, 2010. https://doi.org/10.1016/j.ijplas.2010.01.004

Ames, N. M., **Srivastava**, **V.**, Chester, S.A., and Anand, L.*, A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications, *International Journal of Plasticity*, 25(8), 1495–1539, 2009. https://doi.org/10.1016/j.ijplas.2008.11.005

Anand, L.*, Ames, N. M., **Srivastava, V.**, and Chester, S.A., A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation, *International Journal of Plasticity*, 25(8), 1474–1494, 2009. https://doi.org/10.1016/j.ijplas.2008.11.004

Henann, D., **Srivastava, V.**, Taylor, H.K., Hale, M.H., Hardt, D.E., and Anand, L.*, Metallic glasses: Viable tool materials for production of surface microstructures in amorphous polymers by micro-hot-embossing, *Journal of Micromechanics and Microengineering*, 19, 115030:1-10, 2009. https://doi.org/10.1088/0960-1317/19/11/115030

Srivastava, V., Parameswaran, V., Shukla, A.* and Morgan, D., Effect of loading rate and geometry variation on the dynamic shear strength of adhesive lap joints, *Recent Advances in Experimental Mechanics*, Refereed Special Technical Publication, Kluwer Academic Publishers, 769–780, 2002. https://doi.org/10.1007/0-306-48410-2_71

Srivastava, V., Parameswaran, V. and Shukla, A.*, Experimental evaluation of the dynamic shear strength of the adhesive-bonded lap joints, *Journal of Testing and Evaluation*, 28(6), 438–442, 2000. https://doi.org/10.1520/JTE12134J

SELECTED CONFERENCE PROCEEDINGS

Lu, A, Zhong, J., Bellala, V., and Srivastava, V.*, Elastic-Viscoplastic-Damage in High-Density Polyethylene Under Chemical Environment, SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2022

Kothari, M., Niu, S., and **Srivastava, V.**, Thermo-mechanically coupled model for phase transition in austenitic steels for low temperature applications, 25th International Congress of Theoretical and Applied Mechanics, 2021

Niu, S., Back, W., and **Srivastava, V.**, Accurate NDT Characterization of Hidden Flaws with Mechanics and Machine Learning, *Proceedings of Pipeline Research Council International Research Exchange*, 2021

Thirumalai, N., **Srivastava, V.**, Hallai, J., Ma, N., Sarosi, P., Jun, H.J., and Baker, D., Hydrogen Permeation, Absorption and Trapping in Carbon Steels: A Comparison of Line Pipe and OCTG Steels, *Proceedings of the 29th International Ocean and Polar Engineering Conference*, 2019

Jun, H.J., **Srivastava, V.**, Ma, N., Sarosi, P., and Thirumalai, N., Measuring Crack Propagation Resistance of Line Pipe Steels in Sour Service – A Comparative Study of Test Methods and Materials Response, *Proceedings of the 29th International Ocean and Polar Engineering Conference*, 2019

Zheng, H., Slocum, S.T., Huang, J.Z., **Srivastava, V.**, Lee, S. and Wang, H.H., Numerical Analysis of Experimental Data of Subsea Jumper Vortex Induced Vibrations, *Proceedings of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering*, 2015

Srivastava, V., Hallai, J., Campbell, B., and Kokkinis, T., Dynamic response of submerged buoys disconnected at large vessel offsets, *Proceedings of Arctic Technology Conference*, 2014

Stright, S., **Srivastava**, **V.**, King, G., Smith, D.W., and Tears, N.C., Regeneration of first-generation subsea fields: the challenges of new wells in old infrastructure, *Society of Petroleum Engineers Drilling Conference Proceedings*, 2012

Srivastava, V., Buitrago, J., and Slocum, S.T., Stress analysis of a cryogenic corrugated pipe, *Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering*, 2011

Chester, S.A., Srivastava, V., and Anand, L., A thermo-mechanically-coupled theory for the damage and failure of

amorphous polymers, Proceedings of the SEM IMPLAST 2010 Conference, 2010

Srivastava, V., and Anand, L., On modeling the mechanical behavior of amorphous polymers for the micro-hotembossing of microfluidic devices, *Proceedings of ASME International Mechanical Engineering Congress & Exposition*, 2008

INVITED TALKS

18 th U.S. National Congress on Computational Mechanics, Chicago, IL	2025
Keynote Speaker, Biodegradable Polymers as Medical Implants Workshop, Indian Inst. of Tech., Delhi	2024
ASME Drucker Medal Symposium, International Mechanical Engineering Congress, Portland, OR	2024
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI	2023
Celebrating the 80 th Birthday of Thomas J.R. Hughes, <i>Advances in Computational Mechanics</i> , Austin, TX	2023
Aerospace Engineering & Mechanics, <i>University of Minnesota</i> – Twin Cities, Minneapolis, MN	2023
Society of Engineering Science Annual Technical Meeting, Minneapolis, MN	2023
Symposium in Honor of Prof. Arun Shukla's 70 th Birthday, <i>University of Rhode Island</i> , Kingston, RI	2023
Department of Civil and Environmental Engineering, <i>University of Southern California</i> , Los Angeles, CA	2023
College of Engineering Mechanics Seminar, Georgia Institute of Technology, Atlanta, GA	2023
Mechanical Engineering Mechanics Seminar, Massachusetts Institute of Technology, Cambridge, MA	2023
Mechanical Engineering Department Seminar, Auburn University, Auburn, AL	2023
CRUNCH Seminar, Division of Applied Mathematics, Brown University, Providence, RI	2023
Keynote Speaker , 19 th U. S. National Congress on Theoretical and Applied Mechanics, Austin, TX	2022
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India	2022
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore	2022
Department of Aerospace Engineering, Indian Institute of Science, Bengaluru, India	2022
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, India	2022
Mechanical Engineering Department, Alliance University, Bengaluru, India	2022
Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI	2022
Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ	2022
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY	2021
Pipeline Research Council International Research Exchange, Houston, TX	2021
ExxonMobil Research and Engineering, Spring, TX	2021
University Research Series, Naval Underwater Warfare Research Center, Newport, RI	2021
Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, RI	2020
Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, RI	2019
Metallurgical Engineering and Material Science, Indian Institute of Technology, Mumbai, India	2019
Department of Applied Mechanics, Indian Institute of Technology, Delhi, India	2019
Biomedical Engineering, School of Engineering, Brown University, Providence, RI	2018

Ocean Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA	2016
International Symposium on Plasticity, Puerto Vallarta, Mexico	2011
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India	2010
Singapore Institute of Manufacturing Technology, Singapore	2009
ExxonMobil Upstream Research Company, Houston, TX	2008
Sensitron Semiconductor, Hauppauge, NY	2008
Intel Corporation, Hillsboro, OR	2008

CONFERENCE PRESENTATIONS

Konale, A., and **Srivastava, V**. (*Invited speaker*), Rate-dependent deformation and fracture of soft polymers, 18th U.S. National Congress on Computational Mechanics, Chicago, IL 2025

Srivastava, V. (*Keynote speaker*), pH-Modulating and Therapeutic-Delivering Biodegradable Hydrogels to Improve Cancer Therapy, *Biodegradable Polymers as Medical Implants Workshop*, Scheme for Promotion of Academic and Research Collaboration, New Delhi, India, 2024

Konale, A., and **Srivastava, V.** (*Invited speaker*), Damage and fracture modeling of soft polymers, ASME Drucker Symposium, *International Mechanical Engineering Congress & Exposition*, Portland, OR 2024

Srivastava, V. (*Invited speaker*), Convolutional and Physics-Informed Neural Networks for Structural Mechanics Problems, *Society of Engineering Science Annual Technical Meeting*, Minneapolis, MN, 2023

Konica, S., Sheldon, B., and **Srivastava, V**., A mechanistic study of solid electrolyte interphase instability in Li metal anode batteries, *Society of Engineering Science Annual Technical Meeting*, Minneapolis, MN, 2023

Konale, A., Zahra, A., Wanchoo, P. and **Srivastava, V**., A large deformation model for quasi-static to high strain rate response of rate-stiffening soft polymers, *Society of Engineering Science Annual Technical Meeting*, Minneapolis, MN, 2023

Kottila, V.V., Parambil, N.K., Guduru, P. and **Srivastava, V**., Effect of water on unidirectional fiber-reinforced composite: a computational study, *Society of Engineering Science Annual Technical Meeting*, Minneapolis, MN, 2023

Konale, A., Ahmed, Z., and **Srivastava, V.**, A computational model for rate-dependent material state transition response of rate stiffening gels, 17th U.S. National Congress on Computational Mechanics, Albuquerque, NM, 2023

Niu, S., Zhang, E., Bazilevs, Y., and **Srivastava, V**., Computational Data-Based Convolutional and Physics-Based Neural Networks for Structural Mechanics Problems, 17th U.S. National Congress on Computational Mechanics, Albuquerque, NM, 2023

Konale, A., Ahmed, Z., and **Srivastava, V**., A large deformation continuum theory for strong rate-dependent and material phase transition response of shear stiffening gels, *Society of Engineering Science Annual Technical Meeting*, College Station, TX, 2022

Srivastava, V. (*Keynote speaker*), Coupled mechanics from metastable phase transitioning steels to shock absorbing gels, 19th U. S. National Congress on Theoretical and Applied Mechanics, Austin, TX, 2022

Zong, J., and **Srivastava**, **V**., A higher-order morphoelastic beam model for biologically growing tubes and filaments, 19th U. S. National Congress on Theoretical and Applied Mechanics, Austin, TX, 2022

Niu, S., and **Srivastava**, V., FEA trained CNN to accurately characterize a crack and classify interacting flaws from experimental ultrasound measurements, 19th U. S. National Congress on Theoretical and Applied Mechanics, Austin, TX, 2022

Ahmed, Z., LoGiudice, K., and **Srivastava**, **V**., Hydrogels to regulate extracellular pH in the breast cancer microenvironment and improve chemotherapeutic efficacy, *12th AACR-JCA Joint Conference Breakthroughs in Cancer Research: Translating Knowledge into Practice*, Maui, HI, 2022

Zhong, J., Lu, A., Bellala, V., LoGiudice, K., and **Srivastava, V**., Elasto-Viscoplastic-Damage in High Density Polyethylene Under Chemical Environment, *Society of Experimental Mechanics Annual Conference*, Pittsburgh, PA, 2022

Kothari, M., Niu, S., and **Srivastava, V.**, A Thermo-mechanical Continuum Model for Phase-Transitioning Austenitic Steels at Low Temperatures, *ASME International Mechanical Engineering Congress and Exposition*, virtual, 2021

Usherwood, T., LaJoie, Z., and **Srivastava, V.**, A Population, Behavior, and Vaccination-Based Model for the COVID-19 Pandemic, *ASME International Mechanical Engineering Congress and Exposition*, virtual, 2021

Sampath, S.G., Lu, A., and **Srivastava, V.**, A Novel Minimally Invasive Nitinol Based Spinal Cord Stimulation Device for Improved Pain Management, *Biomedical Engineering Society Annual Meeting*, virtual, 2021

LaJoie, Z., Usherwood, T., and **Srivastava, V.**, A Model and Predictions for COVID-19 Considering Population Behavior and Vaccination, *Biomedical Engineering Society Annual Meeting*, virtual, 2021

Mays, G., Trivedi, S., Ahmed, Z., Logiudice K., and **Srivastava, V.**, A Hydrogel System for pH Regulation of the Tumor Microenvironment, Biomedical Engineering Society Annual Meeting, virtual, 2021

Kothari, M., Niu, S., and **Srivastava, V.**, Thermo-mechanically coupled model for phase transition in austenitic steels for low temperature applications, *25th International Congress of Theoretical and Applied Mechanics*, virtual, 2021

Niu, S., and **Srivastava, V.**, Accurate NDT Characterization of Hidden Flaws with Mechanics and Machine Learning, 16th U.S. National Congress on Computational Mechanics, virtual, 2021

Niu, S. and **Srivastava, V. (Invited Speaker)**, Improved NDT Detection and Probabilistic Failure Prediction for Pipeline Anomalies, *PHMSA Pipeline Safety Research and Development Forum*, Arlington, VA, 2021

Kaiser, N.J., Bai, Y., **Srivastava, V.**, and Coulombe, K.L.K., Precision Collagen Microfiber Architecture for Engineering Tissue Anisotropy, *Regenerative Medicine Workshop*, Charleston, SC, 2020

Kaiser, N.J., Bai, Y., **Srivastava, V.**, and Coulombe, K.L.K., An Integrated Experimental-Computational Approach to Designing Bespoke Collagen Microfiber Architecture in Tissue Scaffolds for Anisotropic Mechanical Performance, *Biomedical Engineering Society Annual Meeting*, Philadelphia, PA, 2019

PATENTS

Shape Memory Alloy and Polymer Electrode Array for Minimally-Invasive Spinal Cord and Brain Stimulation and Recording, V. Srivastava, A. Telfeian, and S. Sampath, Patent No. 202190000584.6 (patent in China granted, U.S. in process)

Finalist in the American Academy of Pain Medicine x MIT Hacking Medicine Innovation Challenge, Miami, FL 2023

pH regulating hydrogels that neutralize tumor acidosis and increase chemotherapy efficacy, **V. Srivastava**, S. Sanatoki, Z. Ahmed, and G. Mays, accepted 2025

Computationally Trained Machine Learning Models for Non-Destructive Evaluation of Material and Structural Flaws, **V. Srivastava** and S. Niu, filed 2024

RESEARCH GRANTS

Award: Dean's Award in Bioengineering **Source of Support:** Brown University

Title: Advancing and translating cancer therapy research toward pre-clinical studies

Dates: 07/01/2024 – 06/30/2025

Role on Grant: PI, Grant Amount: \$25,000

Source of Support: U.S. Department of Defense, Naval Surface Warfare Center

Title: Mechanical Properties, Damage, and Failure in Additively Manufactured Advanced Polymers Subjected to

Long-Term Seawater Exposure **Dates:** 04/01/2025 – 03/30/2028

Role on Grant: PI, Grant Amount: \$300,000

Source of Support: U.S. Department of Transportation

Title: Selection and Development of Safer Polymer and Composite Pipeline Liners through Microstructural and

Macroscopic Study of Materials and Designs

Dates: 04/01/2023-03/30/2026

Role on Grant: PI, Grant Amount: \$1,000,000

Source of Support: U.S. Department of Defense, Office of Naval Research

Title: Undersea Vehicle Science and Technologies: Multifunctional Structural Batteries, Materials for Extreme

Environments and Multi-Metal Additive Manufacturing

Dates: 06/01/2023 – 05/30/2027

Role on Grant: Co-PI, Grant Amount: \$2,762,558,

Lead Investigator for the research project on "Soft tissue and cell damage under impact and shock loads."

Source of Support: U.S. Department of Defense, Office of Naval Research

Title: Predictive Modeling and Simulation for Next Generation Naval Undersea Vehicles and Platforms

Dates: 06/01/2022 – 05/30/2026

Role on Grant: Co-PI, Grant Amount: \$4,684,264

Lead Investigator for the research project "Deformation and damage of FRP and advanced composites."

Source of Support: U.S. Department of Defense, Office of Naval Research

Title: Undersea Vehicle Science and Technologies: Multifunctional Structural Batteries, Materials for Extreme

Environments and Multi-Metal Additive Manufacturing

Dates: 08/01/2022 – 07/31/2026

Role on Grant: Co-PI, Overall Grant Amount: \$3,751,412

Lead Investigator for the research area "Materials and Structures for Extreme Environment."

Brown School of Engineering News: https://engineering.brown.edu/news/2021-09-27/onr-award

Award: Brown Biomedical Innovations to Impact

Source of Support: Brown University

Title: Shape Memory Alloy Based Novel Minimally Invasive Neural Stimulation Device for Improved Pain

Management

Dates: 10/01/2022 – 09/30/2023

Role on Grant: PI, Grant Amount: \$100,000

Brown University News: https://www.brown.edu/news/2022-11-30/bbii

Brown School of Engineering News: https://engineering.brown.edu/news/2022-12-01/bbii-awards-2022

Source of Support: General Motors

Title: General Motors-Brown University Collaborative Research Laboratory in Computational Materials Research

Dates: 12/01/2021 – 06/30/2024 (Completed)

Role on Grant: Co-PI (\$200,000), Overall Grant Amount: \$1,250,000

Lead Investigator for the research project "Modeling of Li metal deformation and SEI failure during deposition and stripping for Li-battery anode."

Source of Support: U.S. Department of Transportation

Title: Modeling Slow Crack Growth Under Thermal and Chemical Effects and Accurate NDT of Cracks for Fitness Predictions of Polyethylene Pipes

Dates: 09/01/2020 – 08/31/2023 (Completed) **Role on Grant:** PI, **Grant Amount:** \$250,000

Award: Research Seed Award **Source of Support:** Brown University

Title: Responsive Hydrogel Based pH Regulation of Cancer Tumor Microenvironment to Reduce Metastasis

Dates: 03/01/2021 – 06/30/2023 (Completed) **Role on Grant:** PI, **Grant Amount:** \$50,000

News articles: Brown Herald and Brown 2021-seed-awardees

Source of Support: Rhode Island State Commerce Corporation, Hitachi

Title: Understanding Microstructural Variables and their effects on Thermoplastic Polyurethane Properties

Dates: 10/01/2020 – 07/31/2021 (Completed) **Role on Grant:** PI, **Grant Amount:** \$50,000

Award: Richard B. Solomon Faculty Research Award to recognize excellence in scholarship

Source of Support: Brown University

Title: Bio-inspired Novel Hydrogel Architecture for Energy Harvesting

Dates: 05/01/2020 – 06/30/2022 (Completed) **Role on Grant:** PI, **Grant Amount:** \$13,300

Brown School of Engineering News: https://engineering.brown.edu/news/2020-04-08/university-awards

Source of Support: U.S. Department of Transportation

Title: Improved NDT Detection and Probabilistic Failure Prediction for Interacting Pipeline Anomalies

Dates: 10/01/2019 – 09/30/2022 (Completed) **Role on Grant:** PI, **Grant Amount:** \$250,000

Source of Support: Rhode Island State Commerce Corporation, Gliaview LLC

Title: Biopolymers for Cranial Prosthesis Application **Dates:** 06/01/2019 – 05/31/2020 **(Completed) Role on Grant:** PI, **Grant Amount:** \$50,000

TEACHING

Course evaluation scale: *Highest effectiveness = 5* to Lowest effectiveness = 1

Brown Engineering News: https://engineering.brown.edu/news/2023-05-02/teaching-mentoring-dei-awards

Undergraduate Course:

ENGN 1210: Biomechanics	(upper-level core course)
• Spring 2025: 42 students (88% response). Instructor Effectiveness: 4.78;	Course Effectiveness: 4.88
• Spring 2024: 34 students (85% response). Instructor Effectiveness: 4.67;	Course Effectiveness: 4.56
• Spring 2023: 42 students (86% response). Instructor Effectiveness: 4.79;	Course Effectiveness: 4.65
• Spring 2022: 33 students (88% response). Instructor Effectiveness: 4.77;	Course Effectiveness: 4.58
• Spring 2021: 26 students (77% response). Instructor Effectiveness: 4.95;	Course Effectiveness: 4.74
• Spring 2020: 27 students (96% response). Instructor Effectiveness: 4.88;	Course Effectiveness: 4.74
 Spring 2019: 22 students (82% response). Instructor Effectiveness: 4.67; 	Course Effectiveness: 4.44

Graduate Course:

ENGN 2911R: Analytical Modeling for Biomechanical and Biomedical Systems (new course developed in 2018)

Fall 2024: 15 students (80% response).
 Instructor Effectiveness: 4.91; Course Effectiveness: 4.75
 Fall 2021: 15 students (93% response).
 Fall 2020: 22 students (91% response).
 Fall 2019: 13 students (100% response).
 Fall 2018: 9 students (89% response).
 Instructor Effectiveness: 4.91; Course Effectiveness: 4.93
 Instructor Effectiveness: 4.70; Course Effectiveness: 4.68
 Instructor Effectiveness: 5.00; Course Effectiveness: 5.00
 Instructor Effectiveness: 5.00; Course Effectiveness: 4.63

Brown School of Engineering News: https://engineering.brown.edu/news/2020-04-17/conversations-covid

Course Instructor at ExxonMobil

•	Fitness for Service of Structures: Overview and Case Studies	2017
•	Offshore and Arctic Engineering: Deepwater Field Development	2013 –2014
•	Floating Drilling School: Drilling Riser and Stationkeeping Systems	2012 – 2014

ADVISING

Postdoctoral fellows advised

Postdoctoral fellows advised	d	
Keven Alkhoury, Ph.D. Damage and failure of polymer	(Solid Mechanics)	2024 – current
Vaishakh Kotilla Veedu, Ph.D. Hygroscopic damage and failur	(Solid Mechanics) e of fiber-reinforced composites	2022 – 2025
Shabnam Konica, Ph.D. Continuum scale modeling of Li (current position: FEA Develope		2022 – 2023
Jun Zhong, Ph.D. Modeling of cell-extracellular n (current position: Scientist, Bris	(Solid Mechanics) natrix interactions, polyethylene damage and failure mod stol Myers Squibb)	2020 – 2022 deling
Mrityunjay Kothari, Ph.D.	(Solid Mechanics)	2018 – 2019

Doctoral dissertations supervised

Thermo-mechanically coupled modeling of metastable austenitic steels

Sijun Niu	(Solid Mechanics)	2018 – 2022 (Graduated)
Thesis: Finite	Element and Neural Networks for	Flaw Characterization and Plasticity Models
(current posit	ion: Display Mechanical Engineer, A	Apple Inc.)

(currently tenure-track Assistant Professor of Mechanical Engineering at the University of New Hampshire)

Zahra Ahmed (Biomedical Engineering) Expected Completion: 2025	2019 – current
Aditya Konale (Solid Mechanics) Expected Completion: 2026	2021 – current
Kevin LoGiudice (Biomedical Engineering) Expected Completion: 2026	2021 – current
Deepro Ghosh (Solid Mechanics)	2023 – current

Expected Completion: 2028

Master's thesis supervised

Dingyi Yang (Biomedical Engineering) Graduated (2025)

Thesis: Mechanobiological Effects of Residual Stress on Epithelial Cell Morphology

Tarik Matthew Simpson (Biomedical Engineering) Graduated (2025)

Thesis: A preliminary investigation of damage in marine mammal tissue due to mechanical loads using silicon rubber (ECOFLEX) as a representative material

Rachel Rowey (Biomedical Engineering)

Graduated (2025)

Thesis: Development of Method for A-Scan Ultrasound Localization of Solid, Nonpalpable Breast Lesions

Karolina Palac (Biomedical Engineering)

Graduated (2025)

Graduated (2024)

Thesis: Development of Method for A-Scan Ultrasound Localization of Solid, Nonpalpable Breast Lesions

Dashaun Simon (Biomedical Engineering)

Thesis: An Experimental Study of a Flexible, Self-Healing Strain Sensor

(Solid Mechanics) Hyun Young Nam Graduated (2023)

Thesis: A Slow Crack Growth Model for High-Density Polyethylene under Thermal and Chemical Environment (current position: Ph.D. student at Brown University)

Francesca Abulencia (Biomedical Engineering) Graduated (2023)

Thesis: A Method for the Detection and Characterization of Breast Tumors using Ultrasound with CNN (current position: Clinical Informatics Analyst, InterSystems)

Andrea Lu (Biomedical Engineering) Graduated (2022)

Thesis: Response and Failure of HDPE and UHMWPE under Chemical, Biological, and Thermal Environments (current position: Associate Marketing Manager, BD Medical Device Company)

(Biomedical Engineering) Anna Rusnak

Graduated (2022)

Thesis: Using Convolutional Neural Network for Early Breast Cancer Detection (current position: Research Associate, Computational Biology/AI at FL84)

Gavin May (Biomedical Engineering)

Graduated (2022)

Thesis: Effect of pH-Regulation on Chemotherapeutic Efficacy

(current position: Ph.D. student at Yale University)

Kevin LoGiudice (Biomedical Engineering)

Graduated (2021)

Thesis: Responsive Hydrogel-Based pH Regulation to Reduce Malignant Phenotypes in Breast Cancer Cells (current position: Ph.D. student at Brown University)

Shruti Trivedi (Chemical Engineering)

Graduated (2021)

Thesis: Development of Hydrogel Systems for pH Regulation of Cancer Tumor Microenvironment (current position: Senior Associate Scientist at Pfizer Pharmaceutical R&D)

Shailen Sampath

Graduated (2021)

Thesis: Shape Memory Nitinol Based Minimally Invasive Spinal Cord Stimulation Lead Concept for Pain Relief (current position: Medical student at Columbia University)

Yifei Bai (Solid Mechanics) Graduated (2020)

Thesis: Computational modeling of anisotropic engineered heart tissue

(Biomedical Engineering)

(current position: Ph.D. student at the University of Oxford)

Savan Santoki (Fluid Mechanics)

Luis Marquez (Fluid Mechanics)

Graduated (2020)

Thesis: A biocompatible hydrogel system for active pH control

(current position: Founder, Advanced Magnetic Products)

Graduated (2020)

Thesis: Design and analysis of a new minimally invasive spinal cord stimulation device

Undergraduate honors research thesis supervised

Thesis: Damage and Failure of Polylactic Acid Filament in a Saltwater Environment Daanish Aleem Qureshi Thesis: Detecting Dietary Patterns and Health Status Using Machine Learning Through Photos of Hands amie Saito 2025 Thesis: Acidosis and Hypoxia Induced Responses in Patient-Derived Organoids Drive Development of pH- Modulating Hydrogel Immunotherapy ustin Moustouka 2025 Thesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr 2024 Thesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey 2024 Thesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Thesis: Detecting Dietary Patterns and Health Status Using Machine Learning Through Photos of Hands amie Saito Chesis: Acidosis and Hypoxia Induced Responses in Patient-Derived Organoids Drive Development of pH-Modulating Hydrogel Immunotherapy ustin Moustouka 2025 Chesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr Chesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey 2024 Chesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
amie Saito Chesis: Acidosis and Hypoxia Induced Responses in Patient-Derived Organoids Drive Development of pH-Modulating Hydrogel Immunotherapy ustin Moustouka Chesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr Angelina Schorr Chesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey Chesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Chesis: Acidosis and Hypoxia Induced Responses in Patient-Derived Organoids Drive Development of pH-Modulating Hydrogel Immunotherapy ustin Moustouka Chesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey Chesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Modulating Hydrogel Immunotherapy ustin Moustouka Thesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr 2024 Thesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey 2024 Thesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Chesis: Development of a Tunable Microfabrication-Based Platform for Cell Migration Studies under 3D Spatial Confinement Angelina Schorr Chesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey Chesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Confinement Angelina Schorr Chesis: Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey Chesis: Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
<u>Chesis:</u> Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey <u>Chesis:</u> Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
<u>Chesis:</u> Cancer Cell Response to Chemical Stimuli in Engineered Tumor Microenvironments Rachel Rowey <u>Chesis:</u> Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
<u>Thesis:</u> Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
<u>Thesis:</u> Immune Checkpoint Inhibitor Releasing and pH-Modulating Hydrogels for Acidosis-Dependent mmunosuppression
Karolina Palac 2024
<u>Thesis:</u> Mechanical Considerations for In Vitro Studies of Cell Behavior
/enkatsai Bellala 2024
<u>Thesis:</u> Development of a Drop Tower to Experimentally Study Moderate Rate Cell Injury
shitaa Gupta 2024
Thesis: Inducing polymer mesophases and analyzing their properties in non-mesogenic polymers
Ruth Sullivan
<u>Thesis:</u> Experimental Validation of FEA Trained Neural Network for Characterization of Soft Tissue Anomalies
Zachary LaJoie 2022
<u>Thesis:</u> A mathematical model for COVID-19 considering population behavior, variants, and vaccination

Shailen Sampath Charles Barian of Minimally Investive Barautanaaus Spinal Cond Stirmyletian Loads using Share Managur Baluma
<u>Thesis:</u> Design of Minimally Invasive Percutaneous Spinal Cord Stimulation Leads using Shape Memory Polymen and Super Elastic Alloy

Ph.D. thesis committees served

Zakhar Lyakhovych (Thesis Advisor: Edith	(Biomedical Engineering) Mathiowitz, Ph.D.)	2025 – current
Landon Begin (Thesis Advisor: Joseph	(Biomedical Engineering) n Crisco, Ph.D.)	2025 – current
Basel White (Thesis Advisor: Miche	(Biomedical Engineering) lle Dawson, Ph.D.)	2025 – current
Ki Ma (Thesis Advisor: Yuri B	(Solid Mechanics) azilevs, Ph.D.)	2025 – current
Sarah Planchak (Thesis Advisor: Anubh	(Biomedical Engineering) nav Tripathi, Ph.D.)	2025 – current
Lily Cordner (Thesis Advisor: Ian W	(Biomedical Engineering) ong. Ph.D.)	2024 – current

Nazanin Ahmadi (Biomedical Engineering) (Thesis Advisor: George Karniadakis, Ph.D.)	2024 – current
Alex Hruska (Biomedical Engineering) (Thesis Advisor: Ian Wong, Ph.D.	2023 – current
Krishangi Krishna (Biomedical Engineering) (Thesis Advisor: Kimani Toussaint, Ph.D.)	2022 – current
Shaunak Shende (Solid Mechanics) (Thesis Advisor: Yuri Bazilevs, Ph.D.)	Graduated (2025)
Kiera Dwyer (Biomedical Engineering) (Thesis Advisor: Kareen Coulombe, Ph.D.)	Graduated (2025)
Harsh Jagad (Materials Engineering) (Thesis Advisor: Yue Qi, Ph.D.)	Graduated (2025)
Mitchell Harling (Biomedical Engineering) (Thesis Advisor: Kimani Toussaint, Ph.D.)	Graduated (2024)
Deanna Stueber (Biomedical Engineering) (Thesis Advisor: Vicki Colvin, Ph.D.)	Graduated (2024)
Weican Li (Solid Mechanics) (Thesis Advisor: Yuri Bazilevs, Ph.D.)	Graduated (2024)
Josephine Kalshoven (Biomedical Engineering) (Thesis Advisor: Joseph Crisco, Ph.D.)	Graduated (2024)
Cu Huy (Biomedical Engineering) (Thesis Advisor: Arto Nurmikko, Ph.D.)	Graduated (2024)
Ramisa Fariha (Biomedical Engineering) (Thesis Advisor: Anubhav Tripathi, Ph.D.)	Graduated (2024)
Enrui Zhang (Applied Mathematics) (Thesis Advisor: George Karniadakis, Ph.D.)	Graduated (2023)
Ryan Dubay (Biomedical Engineering) (Thesis Advisor: Eric Darling, Ph.D.)	Graduated (2023)
Alicia Minor (Biomedical Engineering) (Thesis Advisor: Kareen Coulombe, Ph.D.)	Graduated (2023)
Wenqiang Fang (Solid Mechanics) (Thesis Advisor: Haneesh Kesari, Ph.D.)	Graduated (2022)
Cameron Baptista (Biomedical Engineering) (Thesis Advisor: Edith Mathiowitz, Ph.D.)	Graduated (2022)
Xiuqi Li (Solid Mechanics) (Thesis Advisor: David Henann, Ph.D.)	Graduated (2021)
Yixiang Deng (Fluids and Thermal Sciences)	Graduated (2021)
(Thesis Advisor: George Karniadakis, Ph.D.)	
Weilin Deng (Solid Mechanics) (Thesis Advisor: Haneesh Kesari, Ph.D.)	Graduated (2019)
Kaushik Vijaykumar (Solid Mechanics) (Thesis Advisor: Haneesh Kesari, Ph.D.)	Graduated (2019)
Michael Jandron (Solid Mechanics) (Thesis Advisor: David Henann, Ph.D.)	Graduated (2019)

Master's thesis committees served

Amulya Kadaba	(Biomedical Engineering, Thesis Advisor: Jillian Beveridge, Ph.D.)	2025
Jinqian Li	(Biomedical Engineering, Thesis Advisor: George Karniadakis, Ph.D.)	2025
Samantha Zalk	(Biomedical Engineering, Thesis Advisor: Jillian Beveridge, Ph.D.)	2024
Achilles Gatsonis	(Biomedical Engineering, Thesis Advisor: George Karniadakis, Ph.D.)	2024
Alejandro Marzoratti	(Biomedical Engineering, Thesis Advisor: Ian Wang, Ph.D.)	2023
Madison Altieri	(Biomedical Engineering, Thesis Advisor: Joseph Crisco, M.D.)	2023
Braxton Morrison	(Biomedical Engineering, Thesis Advisor: Michelle Dawson, Ph.D.)	2023
Dana Leichter	(Biomedical Engineering, Thesis Advisor: Richard Gilbert, M.D.)	2022
Anyaa Shah	(Biotech, Thesis Advisor: Edith Mathiowitz, Ph.D.)	2022
Itzel Aponte	(Biomedical Engineering, Thesis Advisor: Vicki Colvin, Ph.D.)	2021
Tobias Clevinger	(Biomedical Engineering, Thesis Advisor: Edith Mathiowitz, Ph.D.)	2021
Julian Montagut	(Biomedical Engineering, Thesis Advisor: Jonghwan Lee, Ph.D.)	2020
Sheila Velagapudi	(Biomedical Engineering, Thesis Advisor: Edith Mathiowitz, Ph.D.)	2020
Gina Vimbela	(Biomedical Engineering, Thesis Advisor: Anubhav Tripathi, Ph.D.)	2019
Travis Nguyen	(Biotechnology, Thesis Advisor: Edith Mathiowitz, Ph.D.)	2019

Undergraduate researchers advised

Nikash Long, Biomedical Engineering, Class of 2028	2025 – current
Terrell Davis**, Biomedical Engineering, Class of 2028	2025 – current
Owen Landry, Biomedical Engineering, Class of 2028	2025 – current
Melissa Truong**, Biomedical Engineering, Class of 2028	2025 – current
Dariana Alvarez-Ortiz**, Mechanical Engineering, Class of 2028	2025 – current
Valeria Quero**, Computer Science, Class of 2028	2025 – current
Blane Henok**, Electrical Engineering, Class of 2028	2025 – current
Talia Lang**, Biomedical Engineering, Class of 2028	2025 – current
Angela Zeng**, Biomedical Engineering, Class of 2028	2025 – current
Katrina Truong, Mechanical Engineering, Class of 2026	2024 – current
Mia Kamisato**, Biomedical Engineering, Class of 2027	2024 – current
Emilio Peveri**, Applied Math and Biology, Class of 2026	2024 – current
Xinai Zhang, Biomedical Engineering, Class of 2026	2024 – current
Hellie Chen**, Materials Engineering, Class of 2027	2024 – current
Ian Lau**, Biochemistry & Molecular Biology, Class of 2026	2023 – current
Justin Moustouka***, Biomedical Engineering, Class of 2025	2024 – 2025
Stella Chen**,***, Mechanical Engineering, Class of 2025	2023 – 2025
Jamie Saito***, Biomedical Engineering, Class of 2025	2023 – 2025
Daanish Qureshi, Biomedical Engineering, Class of 2025	2022 – 2025
Angelina Clark, Biomedical Engineering, Class of 2025	2023 – 2024

Manu Chigzoie**, Chemical Engineering, Class of 2026	2024
Joseph Olagundoye**, Computer Engineering, Class of 2026	2024
Rachel Rowey^^^,**,***, Biomedical Engineering, Class of 2024	2022 –2024
Karolina Palac**, ***, Biomedical Engineering, Class of 2024	2022 – 2024
Angelina Schorr ^{^^} ,***,XX, Biomedical Engineering, Class of 2024	2021 – 2024
Venkatsai Bellala**,***, Biomedical Engineering, Class of 2024	2020 – 2024
Ruth Sullivan***, Biomedical Engineering, Class of 2023	2020 – 2023
Serly Chohmalian**, Biomedical Engineering, Class of 2026	2023
Eshanika Urs, Biomedical Engineering, Class of 2026	2023
Thomas Usherwood+,^,xx, Biomedical Engineering, Class of 2022	2020 – 2022
Zachary LaJoie***,^^^, Biomedical Engineering, Class of 2022	2020 – 2022
William Back**, Engineering Physics, Class of 2022	2020 – 2021
Roberto Castro**, Chemical Engineering, Class of 2022	2019 – 2021
Amy Oh, Biomedical Engineering, Class of 2022	2018 – 2021
Shailen Sampath***, Biomedical Engineering, Class of 2020	2019 – 2020
Isaac Nathoo**, Biomedical Engineering, Class of 2021	2018 – 2020
Norbesida Bagabila**, Biomedical Engineering, Class of 2021	2019
Sarah Berman, Meredie Cohen, and Mariko Kishimoto (Capstone advisor)	2020

^{*}Barry Goldwater Scholarship, ^Outstanding BME Senior Award, **Presidential Scholarship, **NSF GRF, ^^The Neal Mitchell '58 Systems Thinking Project Award, ^^^Doris M. and Norman T. Halpin Prize, **UTRA Undergraduate Research Award, ***Honors Thesis Advisee

OUTREACH AND SERVICE

To the university

Director of Graduate Studies for Biomedical Engineering Program	2024 – present
Freshman and Sophomore Advisor	2019 – present
Biomedical Engineering Concentration Advisor	2022 – 2024
Biomedical Engineering Graduate Program Committee Member	2021 – 2022
Hibbitt and Hope St Postdoc Fellows Committee	2023 – 2024
Biomedical Engineering Industry Liaison	2019 – 2024
Honors Thesis Program Committee, School of Engineering	2018 – 2024
Critical Challenge Project Advisor, Executive Masters in Science & Technology Leadership	2018 – 2022

To the profession

Reviewer for peer-reviewed journals: Acta Biomaterialia, Journal of the Mechanics and Physics of Solids, Mechanics of Materials, International Journal of Plasticity, International Journal of Solids and Structures, Journal of Applied Mechanics, Soft Matter, International Journal of Mechanical Science, Engineering with Computers, Extreme Mechanics Letters, Composites Part B, Experimental Mechanics, International Journal of Impact Engineering, Carbohydrate Polymers, Cellular and Molecular Bioengineering, Cold Regions Science and

Technology, Materials Today Communications, Energy, Materials & Design, Computers in Biology and Medicine, Computers and Structures, European Journal of Mechanics /A Solids, International Journal of Numerical Methods in Biomedical Engineering, Scientific Reports

<u>Organized</u> an AmeriMech Symposium "Mechanics of Materials in Extreme Environments" at Brown University (Providence, RI) in 2025. Organized a mini symposium on "Mechanics of Materials under Extreme Environments" in the U.S. National Congress on Computational Mechanics (Chicago, 2025).

Organizer for MiniSymposia on "Soft Materials" in Society for Engineering Science (Austin 2023, Atlanta 2025)

<u>Panel:</u> U.S. Department of Transportation PHMSA Core R&D Program 2020

<u>Panel:</u> National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation 2019

Advisory Board Member, High-Pressure High-Temperature Subsea Systems 2017 – 2018

DeepStar Global Offshore Technology Development Consortium (Represented ExxonMobil on a board including leaders from other oil and gas majors, Chevron, Equinor, Occidental, and Shell)

Member of the Ph.D. Board of Examiners for the Indian Institute of Technology, Delhi 2023 – present Conference symposium co-chair: Society of Experimental Mechanics (2023), Society of Engineering Science (2023)

To the community

Faculty advisor to South Asian scholars in STEM (SASS) for student professional development	2023 – present
STEM Outreach: Lectures to Lincoln School (all girls K-12) on mechanics of materials	2019, 2020, 2021
Invited lecture titled "Artic, Energy and Environment" for the Brown course titled Social Impact of Emerging Technologies – The Role of Scientists/En	2019 gineers
Invited speaker, Brown Biomedical Engineering and Biotechnology Ph.D. program annual retrea	at 2019
Panelist "Transition from postdoc to faculty," Brown postdoctoral retreat	2019
Panelist "Getting into the industry as a Ph.D. scientist/engineer," Brown Biomedical Engineering and Biotechnology Ph.D. program annual retreat	2019
Panelist "Industry perspective," Brown Biomedical Engineering Society	2019
ExxonMobil's Campus Ambassador to M.I.T.	2014 – 2017

AFFILIATIONS

American Society of Mechanical Engineers, Society of Engineering Science, Society of Experimental Mechanics, Biomedical Engineering Society